
Just Another Windows Kernel Perl HakerJoe StewartAugust 2, 2007Copyright () 2007 SeureWorks, In. All Rights Reserved.AbstratIn this paper I will disuss the basis of the Windows serial debuggingprotool, and introdue a ross-platform tool written in Perl to implementthe debug protool without requiring the windbg program.1 IntrodutionThe Mirosoft Windows kernel has inluded ode to allow developers to debugthe kernel itself sine its ineption, although until now, it required use of thefreely-available but proprietary windbg program to take advantage of it. Sinekernel debugging is best performed over a hardware onnetion from a seondsystem, a serial protool was devised to allow remote interation with the de-bugging ode. This serial protool is not o�ially doumented, but is also notterribly omplex, and has been desribed in some detail by Albert Almeida[1℄.Using this information as a basis, I was able to reverse-engineer debugging ses-sions using a serial-port sni�er, leading to the protool implementation desribedin this paper.1.1 Windows kernel debugging setupA remote kernel debug session requires two systems - a host (running the user-land debugger) and a target (a system running in debug mode). The systemsare usually onneted via a null modem serial able, although reent versionsof Windows are apable of debugging over USB 2.0 or IEEE1394 onnetions.The low-level paket-based debug protool is the same, however.The target system is booted into debug mode by addition of the /DEBUGoption to the boot.ini �le. Additional options, suh as serial port and baud rateare also on�gured here. When the system is booted with the /DEBUG option,the KdInitSystem subroutine handles the initialization of several variables andtables, inluding the global variable KdDebuggerEnabled, whih system mod-ules and programs an use to tell when the kernel debugging ode is in play. Atthis point, the system is ready to handle debugging protool pakets from thehost system, but ontinues exeution normally until suh an event is reeived.1



1.2 windbgwindbg (pronouned �windbag�) is the software provided by Mirosoft as partof the Windows DDK. It is a fairly feature-rih debugger, and provides an APIfor extensions that an be loaded as dynami link libraries. However, as I preferto use Windows as a reverse-engineering or development platform as little aspossible, it seemed prudent to understand the low-level details of the debugger'sinteration with the debug ode built into Windows.2 Mirosoft Debug ProtoolThe serial debug protool is paket-based, and uses a de�ned set of struturesto exhange information about the system and the debugger, as well as debugommands and parameters. Pakets reeived are replied to with an ACK paketand are heksummed, in order to deal with orruption or data loss.2.1 Basi paket data exhangeThere are three lasses of pakets used in the protool: normal pakets, ontrolpakets, and the break-in paket. Normal and ontrol pakets also ontain apaket type, de�ning the spei� funtion of the paket. Control paket typesare:PACKET_TYPE_KD_ACKNOWLEDGEPACKET_TYPE_KD_RESENDPACKET_TYPE_KD_RESETNormal pakets may be one of:PACKET_TYPE_KD_STATE_CHANGE32PACKET_TYPE_KD_STATE_MANIPULATEPACKET_TYPE_KD_DEBUG_IOPACKET_TYPE_KD_STATE_CHANGE64Exhange of kernel data/ommands between the debugger and the target is a-omplished with STATE_MANIPULATE or STATE_CHANGE normal pak-ets. The �ow of the protool is maintained using the various ontrol pakettypes.A typial exhange sequene might be a break-in paket, followed by aSTATE_CHANGE paket from the target, whih is ACKed by the debugger.The debugger then might send a ommand inside a STATE_MANIPULATEpaket, whih is ACKed by the target. Any data that might result from theommand would be sent bak to the host inside a STATE_MANIPULATEpaket. 2



2.2 Paket headersA paket header is onstruted as shown:Paket Leader (4 bytes)Paket Type (2 bytes) Byte Count (2 bytes)Paket ID (4 bytes)Cheksum (4 bytes)The paket leader is 0x30303030 for a normal paket, and 0x69696969 for aontrol paket. The paket ID does not have to be inremented by the debugger,you need only ACK any pakets reeived with the orresponding paket ID sentfrom the host. The heksum value is alulated by a simple sum of the payloadbytes.All pakets utilize this paket header struture exept for the break-in paket.It onsists of a single byte, 0x62. If the break-in is suessful, the target will re-spond with a STATE_CHANGE paket informing the debugger that the systemexeution has been halted and ontrol is being passed to the debugger.2.3 Protool funtionsThere are two ruial ontrol paket types, the ACK and the RESET paket.Neither has a payload, so only the header is sent. For an ACK paket, the pakettype is set to 0x0004, and a RESET paket is type 0x0006. RESET pakets areused when the debugger and the target need to synhronize their operations.There is a third ontrol paket type, RESEND, but I have not onsidered itsuse in my implementation, for reasons of keeping simpliity.2.4 API funtionsUsing normal pakets, we are able to aess all of the exposed funtionality of thedebug API. This inludes reading and writing virtual memory, physial memoryor IO spae, aessing kernel variables and ontext, setting or removing break-points, rebooting or resuming exeution of the system, or foring a kernel rash-dump to our. The APIs are aessed by formatting a STATE_MANIPULATEpaket using the strut de�ned by _DBGKD_MANIPULATE_STATE32 or_DBGKD_MANIPULATE_STATE64. It in turn de�nes an 2-byte API num-ber. The most ommonly-used API numbers along with their orrespondingnames are listed below:
3



Virtual memory0x3130 DbgKdReadVirtualMemoryApi0x3131 DbgKdWriteVirtualMemoryApi0x3156 DbgKdSearhMemoryApi0x315b DbgKdFillMemoryApi0x315 DbgKdQueryMemoryApiPhysial memory0x313d DbgKdReadPhysialMemoryApi0x313e DbgKdWritePhysialMemoryApiControl0x3137 DbgKdReadControlSpaeApi0x3138 DbgKdWriteControlSpaeApi0x3132 DbgKdGetContextApi0x3133 DbgKdSetContextApi0x313b DbgKdRebootApi0x3136 DbgKdContinueApi0x3149 DbgKdCauseBugChekApi0x3146 DbgKdGetVersionApi0x3150 DbgKdSwithProessor0x3151 DbgKdPageInApi (may not exist in all API versions)0x3152 DbgKdReadMahineSpei�Register0x3153 DbgKdWriteMahineSpei�Register0x315d DbgKdSwithPartition
4



I/O0x3139 DbgKdReadIoSpaeApi0x3138 DbgKdWriteIoSpaeApi0x3144 DbgKdReadIoSpaeExtendedApi0x3145 DbgKdWriteIoSpaeExtendedApi0x3157 DbgKdGetBusDataApi0x3158 DbgKdSetBusDataApiBreakpoints0x3134 DbgKdWriteBreakPointApi0x3135 DbgKdRestoreBreakPointApi0x3142 DbgKdSetInternalBreakPointApi0x3143 DbgKdGetInternalBreakPointApi0x3147 DbgKdWriteBreakPointExApi0x3148 DbgKdRestoreBreakPointExApi0x315a DbgKdClearAllInternalBreakpointsApiEah API number orresponds to a di�erent payload struture ontaining argu-ments, variables or raw data. However, a detailed layout of eah API strutureis beyond the sope of this paper. This information an be found in the �lewindbgkd.h, whih is part of the ReatOS projet.3 Perl frameworkMany of the essential debug APIs have been implemented in a Perl frameworkI have developed alled windpl (pronouned �windpill�). The soure ode isavailable from http://www.seureworks.om/researh/tools/windpl.html and isGNU GPL liensed. At this time it is only proedural ode. At some point itmight be warranted to reate a full-blown objet-oriented module with betterasynhronous I/O support, but as a proof-of-onept, the program does workand an be used as a simple ommand-line debugging onsole.
5



3.1 Current featuresetSome of the advaned apabilities in windbg have been implemented in thewindpl framework, suh as the ability to list proesses and �nd import ad-dresses in kernel or userspae modules. Another feature in windpl (whih windbgdoesn't have) is the ability to diretly injet userspae threads into the system,using the Windows asynhronous proedure all API. This tehnique was derivedfrom eEye's paper on kernel exploitation[2℄, however in our implementation itis aomplished by manipulating kernel strutures only, there is no kernel-basedshellode needed. An example funtion in the framework an injet a Windowsmessage box into explorer.exe as a demonstration of this tehnique.3.2 Future developmentThere are numerous opportunities for extending the windpl framework to reateother useful tools for haking the Windows kernel. For instane, one ould usethe framework to reate stealthier malware sandboxes or perform live memoryforensis or rootkit detetion in malware-infeted systems. Beause the odeis freely available, with a little knowledge of Perl it should be easy to hakin additional funtionality. I also expet to see the protool implemented inother sripting languages as well, so it is doubtless that we will see windpy(windpie?) before long (perhaps with even leaner ode and a more robust I/Oloop). Regardless, it should be interesting to see what other ring-0 enthusiastsare able to devise in the future with only a null modem able and a few lines ofode.4 windpl ommand refereneb <address> - lear breakpoint at addressbl - list breakpointsbp <address> - set breakpoint at addressbreak - send break-in paket to hostg - resume exeution from next instrutionontinue - resume exeution at urrent instrutiondw <address> - read dword at virtual addresseproess <address> - parse the eproess blok at address6



findproessbyname <name> - find a proess from proess namegetontext - get the urrent thread ontextgetproaddress <module name> <api name> - loate an proedure's import addressgetpspidtable - get the proess/thread handle tablelistexports <baseaddr> - list all the exports from the module at baseaddrlistmodules - list loaded moduleslogial2physial <address> - onvert a virtual address to a physial addressmb <title>|<text> - injet a messagebox into explorer.exe proessparsepe - <baseaddr> give some information about the PE file at baseaddrproessontext <pid> - show the ontext info for the given pidproesslist - list running proessesquit - exit the debuggerr <register>=<value> - read or set the given registerdp <address> <length> - read physial memoryd <address> <length> - read virtual memoryreboot - reboot the targetreset - reset the debugger protool streamversion - show debug API version informationwritevirtualmemory <address> <data> - write bytes to virtual memoryReferenes[1℄ Albert Almeida. Kernel and remote debuggers, November 2003. Availablefrom World Wide Web: http://www.vsj.o.uk/artiles/display.asp?id=265.[2℄ Barnaby Jak. Remote windows kernel exploitation - step into the ring 0,February 2005. Available from World Wide Web: http://researh.eeye.om/html/Papers/download/StepIntoTheRing.pdf.7


